Flux Recovery from Primal Hybrid Finite Element Methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flux Recovery from Primal Hybrid Finite Element Methods

A flux recovery technique is introduced and analyzed for the computed solution of the primal hybrid finite element method for second-order elliptic problems. The recovery is carried out over a single element at a time while ensuring the continuity of the flux across the interelement edges and the validity of the discrete conservation law at the element level. Our construction is general enough ...

متن کامل

Primal Hybrid Finite Element Methods for 2nd Order Elliptic Equations

The paper is devoted to the construction of finite element methods for 2nd order elliptic equations based on a primal hybrid variational principle. Optimal error bounds are proved. As a corollary, we obtain a general analysis of nonconforming finite element methods.

متن کامل

Flux-conserving Finite Element Methods

We analyze the flux conservation property of the finite element method. It is shown that the finite element solution does approximate the flux locally in the optimal order, i.e., the same order as that of the nodal interpolation operator. We propose two methods, post-processing the finite element solutions locally. The new solutions, remaining as optimal-order solutions, are flux-conserving ele...

متن کامل

Hessian recovery for finite element methods

In this article, we propose and analyze an effective Hessian recovery strategy for the Lagrangian finite element method of arbitrary order. We prove that the proposed Hessian recovery method preserves polynomials of degree k + 1 on general unstructured meshes and superconverges at a rate of O(hk) on mildly structured meshes. In addition, the method is proved to be ultraconvergent (two orders hi...

متن کامل

Conservative Flux Recovery from the Q1 Conforming Finite Element Method on Quadrilateral Grids

Compared with standard Galerkin finite element methods, mixed methods for second-order elliptic problems give readily available flux approximation, but in general at the expense of having to deal with a more complicated discrete system. This is especially true when conforming elements are involved. Hence it is advantageous to consider a direct method when finding fluxes is just a small part of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2002

ISSN: 0036-1429,1095-7170

DOI: 10.1137/s0036142900381266